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DESCRIPTION OF MAP UNITS

Alluvium (Holocene)—Youngest alluvium and colluvium in channels,
floodplains, and adjacent low terraces of rivers and major streams; sand, silt, and
clay with lenses of gravel; maximum thickness about 20 feet (6 m).

Younger stream-terrace deposits (Holocene and upper Pleistocene)—Sand and
gravel that form dissected surfaces as much as 15 feet (5 m) above the level of
adjacent modern streams; maximum thickness about 10 feet (3 m).

Older stream-terrace deposits (upper and middle Pleistocene)—Sand and gravel
that form well-dissected surfaces as much as 15 to 30 feet (5 to 10 m) above the
level of adjacent modern streams; maximum thickness about 10 feet (3 m).

Young alluvial-fan deposits (Holocene and upper Pleistocene)—Poorly to
moderately sorted silt, sand, and gravel deposited by streams, sheetwash, debris
flows, and flash floods on alluvial fans and pediments; includes alluvium and
colluvium in upper stream courses; surface is modern and generally undissected;
maximum thickness at least 30 feet (10 m).

Middle alluvial-fan deposits (upper and middle Pleistocene)—Poorly to
moderately sorted silt, sand, and gravel deposited by streams, sheetwash, debris
flows, and flash floods on alluvial fans and pediments; surface is moderately
dissected by modern streams; maximum thickness about 50 feet (15 m).

Old alluvial-fan deposits (middle Pleistocene and Pliocene)—Poorly to
moderately sorted silt, sand, and gravel deposited by streams, sheetwash, debris
flows, and flash floods on alluvial fans and pediments; surface is deeply
dissected by modern and older streams; exposed west of Greek Peak and south of
the Mineral Mountain intrusion (Tim); maximum thickness about 30 feet (10 m).

Talus and colluvium (Holocene and upper Pleistocene)—Poorly sorted, mostly
angular gravel, sand, and silt deposited by rockfall, creep, sheetwash, debris
flow, and streams along scarps and hillsides; mostly mapped where conceals
underlying bedrock; maximum thickness about 30 feet (10 m).

Landslide deposits (Holocene to middle Pleistocene)—Unsorted, mostly angular,
unstratified rock debris moved by gravity from nearby bedrock cliffs; maximum
thickness about 50 feet (15 m).

Gravity-slide breccia (Miocene)—Moderately resistant tectonic breccia resulting
from a gravity slide (huge landslide) carrying angular masses of volcanic rock,
predominantly clasts of the Ox Valley Tuff (To), Racer Canyon Tuff (Tr),
Harmony Hills Tuff (Tqh), and andesite (Ta); mapped in the southwest part of
the Goldstrike quadrangle; the gravity slide was shed off higher areas, probably
from a horst to the south that was uplifted by basin-range faults, but possibly
from the southern part of the roof of a rapidly rising Mineral Mountain intrusion
(Tim), which is probably a laccolith like most of the other plutons of the Iron
Axis to which it belongs — other plutons of the Iron Axis are known to have
spawned gravity slides that locally deroofed rising magma bodies, resulting in
volcanic eruptions (Cook, 1957, 1960; Blank, 1959, 1993; Mackin, 1960; Blank
and Mackin, 1967; Blank and others, 1992; Hacker, 1998; Hacker and others,
1996, 2002, 2007); clasts are as large as 50 feet (15 m); overall thickness about
180 feet (55 m).
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Basalt (Miocene)—Resistant, dark-gray and black, aphanitic, partly vesicular lava
flows of olivine basalt that erupted at the southern and northwestern edge of the
map area; has a K-Ar age of 8.8 + 0.3 Ma from a sample collected about 2 miles
(3 km) north of Motoqua, just south of the map area (Hintze and others, 1994),
but other basalts near the map area range from about 20 Ma to late Quaternary
(Best and others, 1980; Rowley and others, 2006, in press; Biek and others,
2007) and are synchronous with basin-range extension (Christiansen and
Lipman, 1972; Rowley and Dixon, 2001); maximum thickness about 200 feet
(60 m).

Rhyolite and dacite lava flows (Miocene)—Mostly resistant, generally light-gray
and tan, crystal-poor, rhyolite and dacite volcanic domes and lava flows that
erupted in the northwestern part of the map area; maximum thickness about 250
feet (75 m).

Ox Valley Tuff (Miocene)—Consists of the main densely welded ash-flow tuff

and an underlying precursor tuff and sandstone.

Densely welded ash-flow tuff—Mostly resistant, gray, pink, red, and orange,
poorly to densely welded, crystal-poor (including distinctive large “eyes” of beta
quartz), high-silica rhyolite ash-flow tuff exposed as outflow and intracaldera
tuff; in the southwestern part of the map area, contains prominent, steeply
dipping, cooling joints; petrographically and chemically distinctive (Rowley and
others, 1995) and, in places where fresh, contains adularescent sanidine; contains
red and gray lithic clasts (that is, angular fragments of volcanic rocks that were
torn from the magma chamber or vent during ash-flow eruption); derived from a
presumed caldera that is dismembered by faults and whose base is poorly
exposed above the Mineral Mountain intrusion southwest of Greek Peak.
Another area, extending from about 7 miles (11 km) south-southwest of Mineral
Mountain to Dodge Spring, north and northwest of the community of Motoqua,
was suggested to be a caldera source of the Ox Valley Tuff by Anderson and
Hintze (1993) and Hintze and others (1994) because the thickness of the Ox
Valley there is as much as 4,000 feet (1.2 km) and the rock is commonly densely
welded, but it is here interpreted to represent deposition upon thin precursor tuff
(Tot) that in turn rests on thick andesite lava flows and mudflows (Ta) on the
southwestern flank of a mountain formed by rapid, sharp uplift of the laccolithic
Mineral Mountain intrusion; the top of the laccolith is interpreted to have failed
and erupted as a presumed small caldera. The age of the Ox Valley Tuff was
formerly unclear and was considered to be 12.6 to 12.3 Ma (Rowley and others,
1995), but several new “°Ar/*’Ar ages suggest that the age is 14.0 to 13.5 Ma
(Snee and Rowley, 2000): (1) an age of 13.46 Ma from a sample collected from
the lowest of four cooling units exposed in the type area of Ox Valley, 8 miles
(13 km) northwest of Central, Utah (Rowley and others, 2006, in press); (2) an
age of 14.10 Ma from a sample collected just west of Beaver Dam State Park,
Nevada (Rowley and others, 2006, in press) just northwest of the map area; (3)
an age of 12.19 Ma from a rhyolite flow resting on Ox Valley Tuff at Docs Pass,
just west of the map area (Rowley and others, 2006, in press); and (4) an age of
13.93 Ma from a sample collected about 3 miles (5 km) southwest of Enterprise,
just north of the map area (UGS and NMGRL, 2007a); this reinterpretation of the
age of the Ox Valley Tuff (Biek and others, 2007; Rowley and others, 2006, in
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press) suggests, furthermore, that the Ox Valley Tuff may be correlative with the
tuff of Etna, which is widely exposed as an outflow ash-flow sheet in the
Caliente caldera complex, notably well exposed south of Caliente, Nevada, that
has a similar composition and mineralogy as the Ox Valley Tuff and has an age
interpreted to be 14.0 Ma based on ages of overlying and underlying rocks
(Rowley and others, 1995); maximum thickness about 4,000 feet (1,200 m).
Precursor tuff and sandstone—Poorly resistant, pink and light-gray, bedded
and locally cross-bedded, crystal-poor, unwelded tuff and sandstone that predate
densely welded Ox Valley Tuff; has similar mineralogy to the densely welded
unit but contains fewer phenocrysts, so is considered to be an early eruptive
phase of the Ox Valley Tuff; locally contains small red lithic clasts; largely
formed by pyroclastic surge, airfall, and ash-flow origins, but some beds were
deposited by streams; found only in the southwestern part of the map area, where
it is underlain by crystal-poor, reddish-brown and dark-gray andesite or basaltic
andesite lava flows (Ta) and where the overlying densely welded unit (To) is
generally several thousand feet thick; the map unit and overlying densely welded
tuff thus appear to have been deposited in a deep erosional or structural basin on
the southern flank of andesite stratovolcanoes (Ta) and the Mineral Mountain
intrusion; maximum thickness about 100 feet (30 m).

Mineral Mountain intrusion (Miocene)—Resistant, gray and pink, high-silica
granite porphyry stock, interpreted to be a laccolith; made up of mostly fine-
grained orthoclase but with distinctive, abundant, large (as long as 0.3 inch [7
mm]) “eyes” of beta quartz and with minor ferromagnesian minerals; contains
aplitic dikes and a chilled margin at its intrusive concordant roof of Pakoon
Dolomite (Pp) and Callville Limestone (1Pc); contains miarolitic cavities; located
in the southwestern Bull Valley Mountains about 4 miles (6 km) northwest of the
tiny, largely abandoned mining community of Goldstrike (Cook, 1960; Bullock,
1970; Eliopulos, 1974; Morris, 1980; Adair, 1986); considered to be the southern
intrusion of the Iron Axis, a northeast-trending belt of intrusions structurally
controlled by thrust faults and characterized by iron occurrences (Wells, 1938;
Mackin, 1960; Tobey, 1976; Blank and others, 1992; Hacker, 1998; Hacker and
others, 2002, 2007), including the large commercial deposits of the Iron Springs
mining district (Mackin, 1947, 1954, 1960, 1968; Mackin and Ingerson, 1960;
Blank and Mackin, 1967; Mackin and Rowley, 1976; Mackin and others, 1976;
Rowley and Barker, 1978; Barker, 1995) northeast of the map area. The Mineral
Mountain intrusion is compositionally much more silicic and much younger than
the intrusions in other parts of the Iron Axis but, like most of the intrusions of the
Iron Axis (Mackin, 1947, 1954, 1960, 1968; Mackin and Rowley, 1976; Mackin
and others, 1976; Van Kooten, 1988), it appears to be concordant, probably a
laccolith (Bullock, 1970; Eliopulos, 1974; Morris, 1980; Adair, 1986); the
Mineral Mountain intrusion may have been the heat source for hydrothermal
solutions (Adair, 1986; Willden and Adair, 1986; Limbach and Pansze, 1987)
that moved by fracture flow as heated ground water along basin-range faults that
were partly contemporaneous with the intrusion and led to disseminated gold
deposits at and near Goldstrike. The intrusion is interpreted to be the magma
source of the Ox Valley Tuff; it probably erupted when its concordant top or
flank failed, presumably as a small caldera, when oversteepened during rapid



emplacement, like most of the other concordant intrusions of the Iron Axis; a
gravity slide (Tgb) might have been the trigger for failure, as in much of the Iron
Axis; "’Ar/*’Ar integrated age from a disturbed age spectrum is 12.1+1.9 Ma
(UGS and NMGRL, 2007b).

Ta Andesite (Miocene)—Resistant to poorly resistant, brown, green, light- to dark-
gray, red, and reddish-gray, mostly crystal-poor (generally plagioclase and minor
pyroxene and hornblende in an aphanitic groundmass) lava flows, flow breccia,
and volcanic mudflow breccia; flow bases locally are glassy; locally includes
minor dacite flows in the upper part; at the top, unit includes at least 50 feet (15
m) of poorly resistant, partly consolidated, tan sandstone, shale, and
conglomerate that represent stream-deposited basin-fill deposits that are
significantly thicker outside the map area, where basin-range faults created
basins; unit mostly represents a long-lived (an interval between about 23.5 and
13 Ma) complex of stratovolcanoes centered in and west of the western part of
the map area, into which regional ash-flow tuffs are interfingered; unit thins and
pinches out north, east, and south; the map unit is commonly weathered and
poorly exposed, and generally hydrothermally altered, but its lithology at most
stratigraphic intervals appears generally similar, thus without the tuffs, the age
and stratigraphic position of individual andesite flows and mudflows cannot be
determined; one exception to this uniform lithology is the reddish-brown
andesite of Maple Ridge (Blank, 1959, 1993), which underlies the Racer Canyon
Tuff (Tr) in the northwestern part of the map area and contains abundant large
phenocrysts of plagioclase, pyroxene, and biotite; another exception is altered
green andesite flows containing about 40 percent large (0.5 inch [1 cm])
phenocrysts of plagioclase and altered ferromagnesian minerals in the Narrows
of Beaver Dam Wash and in Docs Pass Canyon; the more typical crystal-poor
andesite between the Harmony Hills Tuff (Tqh) and the Bauers Tuff Member of
the Condor Canyon Formation (Tqcb) was called the andesite of Little Creek by
Blank (1993); maximum total thickness is at least 4,000 feet (1,200 m).

The Tuff of Horse Canyon (Miocene) —Moderately resistant, tan and light-yellow,
unwelded to poorly welded, crystal poor (about 5 percent phenocrysts), rhyolite
ash-flow tuff; contains abundant (at least several percent), mostly dark-gray
lithic clasts and abundant light-yellow pumice; mapped as the upper member of
the Racer Canyon Tuff (Tr) by Blank (1959) and Siders (1991); unit likely
derived from a caldera to the west, perhaps buried, of the Caliente caldera
complex; a tuff from one of these calderas, the tuff of Dow Mountain (Snee and
Rowley, 2000) that is exposed south of Panaca Summit 20 miles (32 km) north-
northwest of the map area, was correlated on the basis of petrography with a
sample of what we call the tuff of Horse Canyon from upper Horse Canyon north
of the map area (Rowley and others, in press); this sample has an *°Ar/*’Ar age
of 17.40 + 0.06 Ma (Rowley and others, 2006, in press), although the sample
shows some argon loss so its age could be slightly younger; exposed only in the
northern part of the map area; maximum thickness about 60 feet (20 m).

Tr Racer Canyon Tuff (Miocene)—Resistant, tan, light-gray, light-yellow, and pink,
poorly to moderately welded, moderately crystal-rich (where fresh, quartz is
pink), low-silica rhyolite ash-flow tuff; contains abundant (several percent of
rock volume) gray and pink lithic clasts and abundant (as much as 10 percent)
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light-yellow and light-gray pumice lenticules; where exposed in the map area,
most of the unit is outflow tuff derived from the eastern part of the Caliente
caldera complex (Rowley and others, 1995); some outflow tuffs of the unit just
north of the map area contain pumice blocks as large as 2 feet (0.6 m) and
abundant large phenocrysts, suggestive of proximity to its source; in the
northwestern corner of the map area, a north-dipping stack of tuffs is tentatively
interpreted to be intracaldera Racer Canyon Tuff, an interpretation that will be
investigated during geologic mapping north of the map area in 2007 for the Utah
Geological Survey; exact age of the Racer Canyon Tuff is unclear (Rowley and
others, 1995) but our best estimate is that it is about 18.7 Ma based on two ages
for sample 89-314¢ (Rowley and others, 2006, in press); in the Dodge Spring
area, west of Motoqua, a unit here correlated with the Racer Canyon Tuff was
mapped by Anderson and Hintze (1993) as Hiko Tuff, a unit that is almost
identical to the Racer Canyon Tuff but slightly younger and clearly derived from
the western end of the Caliente caldera complex (Rowley and others, 1995);
about 12 outflow cooling units well exposed south of Upper Enterprise
Reservoir, along the northern edge of the map area, collectively total at least
1,500 feet (450 m) thick, but the map unit thins abruptly southward through the
rest of the map area.

Quichapa Group (Miocene)—Regional ash-flow sheets that are described in

detail by Mackin (1960), Williams (1967), Anderson and Rowley (1975),
Rowley and others (1995), and Scott and others (1995); consist of the
petrographically and chemically distinctive Harmony Hills Tuff, Condor Canyon
Formation, and Leach Canyon Formation.

Harmony Hills Tuff—Resistant, red, pink, gray, and tan, crystal-rich,
moderately welded, dacitic ash-flow tuff; contains as much as 1 percent medium-
gray lithic clasts; contains abundant (as much as 20 percent of rock volume)
collapsed pumice as long as 1 foot (0.3 m), which commonly weathers out to
lenticular cavities; source unknown but isopachs are centered on Bull Valley
(Williams, 1967), suggesting that it was derived from the eastern Bull Valley
Mountains, probably from an early voluminous eruptive phase of the Bull Valley
intrusion, as suggested by Blank (1959), Williams (1967), and Rowley and
others (1995); consistent with this interpretation is the fact that the **Ar/*’Ar age
of the Harmony Hills Tuff is 22.03 Ma (Cornell and others, 2001), nearly
identical to that of the Bull Valley intrusion (Rowley and others, 2006, in press;
Biek and others, 2007); maximum thickness about 900 feet (275 m).

Bauers Tuff Member of the Condor Canyon Formation—Resistant, brown,
gray, and purple, crystal-poor, densely welded, dacitic to trachydacitic ash-flow
tuff, commonly with a black basal vitrophyre, sparse lithic clasts, and long thin
(generally less than 0.5 inch [1 cm] thick and as long as 3 feet [1 m], stony
lenticules (considered by some persons to be “collapsed pumice”); derived from
the northwestern part (Clover Creek caldera) of the Caliente caldera complex
(Rowley and others, 1995); YArAr age is 22.8 Ma (Best and others, 1989b),
which is also the *°Ar/*’Ar age of its intracaldera intrusion exposed just north of
Caliente (Rowley and others, 1994b); maximum thickness about 700 feet (215
m).
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Leach Canyon Formation—Moderately resistant, tan and light-gray, crystal-
poor, poorly welded, low-silica rhyolite ash-flow tuff containing abundant
cognate pumice and red lithic clasts; source is unknown but probably is the
Caliente caldera complex because isopachs show that it thickens toward the
complex (Williams, 1967); the YA Ar age of the formation is about 23.8 Ma
(Best and others, 1993; Rowley and others, 1995); maximum thickness about
600 feet (180 m).

Sedimentary rocks, Isom Formation, and Wah Wah Springs Formation,
undivided (Oligocene)—Intertongued, soft to resistant, mostly light-gray,
hydrothermally altered, continental sedimentary rocks and dark ash-flow tuffs of
the Isom and Wah Wah Springs Formations. From top to base, unit consists of
moderately resistant, light-gray and tan, lacustrine limestone and tuffaceous
fluvial sandstone as thick as 40 feet (12 m) thick; underlain by two resistant
cooling units of the Isom Formation separated by soft, light-gray limestone and
sandstone as much as 30 feet (10 m) thick; underlain in turn by moderately
resistant, light-gray and light-yellow lacustrine limestone and fluvial sandstone
as much as 50 feet (15 m) thick; then underlain by moderately resistant Wah
Wah Springs Formation about 30 feet (10 m) thick (see description below). The
intertonguing of these relatively thin ash-flow tuffs with continental Claron-type
sedimentary rocks is described north, south, and east of the mapped area by
Blank (1959), Hintze and others (1994), and Hacker (1998), but in the Iron
Springs mining district to the northeast, where ash-flow tuffs of the Isom
Formation and the Needles Range Group were defined and first described
(Mackin, 1960; Anderson and Rowley, 1975), the rocks are fresh and thicker,
and those of the Isom include at least a half dozen cooling units.

Isom Formation—At least two resistant, trachydacitic cooling units of the Bald
Hills Tuff Member, an upper purplish-red, densely welded, crystal-poor (about
15 percent) ash-flow tuff, and a lower dark-gray to black, flinty, densely welded,
crystal-poor (about 5 percent) ash-flow tuff that contains linear vesicles; [som
derived perhaps from the Indian Peak caldera complex (Best and others, 1989a,
b) north of the map area; age of the Isom appears to be about 27 to 26 Ma, on the
basis of many *’Ar/*’Ar and K-Ar ages (Best and others, 1989b; Rowley and
others, 1994a); maximum thickness of each cooling unit is as much as 40 feet
(12 m).

Wah Wah Springs Formation of the Needles Range Group—Moderately
resistant, light-gray, pink, reddish-purple, reddish-brown, and olive green,
crystal-rich (about 30 percent), moderately welded, dacite ash-flow tuff that
contains sparse lithic clasts and moderately abundant cognate pumice;
petrographically resembles the Harmony Hills Tuff except that the Wah Wah
Springs is lower in overall crystals and contains more quartz and sanidine;
derived from the Indian Peak caldera complex (Best and others, 1989a, b);
correlated on the basis of petrography and a K-Ar age of 29 Ma with a sample
collected just southeast of the map area (Hintze and other, 1994); Best and others
(1989a) considered the age of the Wah Wah Springs to be 29.5 Ma; thickness
about 30 feet (10 m).

Claron Formation, undivided (Oligocene, Eocene, and Paleocene?)—Undivided
unit shown only in cross sections; soft to resistant, mostly red, maroon, white,
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yellow, gray, and pink, medium- to thick-bedded, lacustrine and fluvial
limestone, calcrete, sandstone, siltstone, mudstone, and conglomerate; age poorly
constrained; probably the Claron represents a restricted interval in the Oligocene
and, perhaps in its lower part, the Eocene and Paleocene(?); exposed only in the
southern part of the map area, where it is badly deformed and hydrothermally
altered along normal and oblique-slip faults; better exposed south of the map
area (Hintze and others, 1994); maximum thickness about 300 feet (100 m).
Upper unit (Oligocene)—Mostly resistant, light-gray and minor light-yellow,
thin- to thick-bedded limestone, pebbly limestone, and minor sandstone,
conglomerate, and shale; limestone contains algal filaments; maximum thickness
about 150 feet (50 m).

Middle unit (Eocene and Paleocene?)—Poorly to moderately resistant, red,
yellow, purple, and medium-gray sandstone, shale, pebble to cobble
conglomerate, and limestone; maximum thickness about 150 feet (50 m).

Lower unit (Eocene and Paleocene?)—Moderately resistant, yellow, light-gray,
and red, pebble to boulder conglomerate (clasts as large as 1.5 feet, or 0.5 m);
south of the map area, unit locally correlated with the Grapevine Wash
Formation (Hintze and others, 1994), which is well exposed as thick
conglomerate and overlying sandstone and conglomerate in Grapevine Wash just
east of the map area (Wiley, 1963); Adair (1986), Willden and Adair (1986), and
Willden (2006), however, considered that an overlying sandstone and
conglomerate in Grapevine Wash belongs to the Claron Formation and rests
unconformably on the Grapevine Wash Formation; in and just east and south of
the map area, unit is the host for many of the disseminated gold ore bodies in the
Goldstrike district (Willden and Adair, 1986; Willden, 2006), perhaps localized
by fossil plant material; maximum thickness about 100 feet (30 m).

Queantoweap Sandstone (Lower Permian)—Resistant, well-cemented, light-
gray, grayish-pink, light-orange, and greenish-gray, thin- to thick-bedded,
commonly cross-bedded, fine-grained, shallow-marine and beach sandstone and
quartzite; locally contains burrows but no other fossils; partial section at least
1,000 feet (300 m) thick.

Pakoon Formation and Callville Limestone, undivided (Lower Permian and

Lower Pennsylvanian)}—Mapped together where highly deformed or
hydrothermally altered, metamorphosed, or poorly exposed.

Pakoon Formation (Lower Permian)—Resistant, light-gray and light-yellow,
thick-bedded, fine-grained, shallow-marine dolomite that commonly weathers to
light-brownish-gray cliffs and ledges; contains light-gray chert; includes tan
dolomitic sandstone in the middle part of the formation; maximum thickness
about 600 feet (180 m).

Callville Limestone (Upper to Lower Pennsylvanian)—Resistant, light- to
medium-gray and light-blue-gray, thin- to thick-bedded, commonly cherty and
fossiliferous (corals, brachiopods, crinoids, fusulinids, and bryozoans), shallow-
marine limestone that forms cliffs or ledge-and-step topography; converted to
marble along the intrusive contacts of the Mineral Mountain intrusion (Tim);
locally contains thin beds of light-orange sandstone and light-gray dolomite in
the upper third of the formation; maximum thickness about 1,500 feet (450 m).



Msc Scotty Wash Quartzite and Chainman Shale, undivided (Upper
Mississippian)—As first recognized by Adair (1986) and Willden and Adair
(1986), the overlying Scotty Wash Quartzite is a resistant, medium- to dark-gray,
tan, and brown, well-bedded, shallow-marine sandstone and quartzite, with
minor thin sandy shale beds, that has a maximum thickness of about 80 feet (25
m); the underlying Chainman Shale is a soft, black, dark-gray, and greenish-gray
marine shale that has a maximum thickness of about 80 feet (25 m).

Mr Redwall Limestone (Lower Mississippian)—Resistant, light- to dark-gray, locally
fossiliferous (crinoids and corals), shallow-marine-shelf limestone, with minor
interbedded light-gray sandstone and light-yellow-gray dolomite in the middle
part of the unit; forms the upper plate of the Goldstrike thrust fault in the
southeastern part of the map area; incomplete section, at least 550 feet (170 m)

thick.
D Devonian sedimentary rocks—Shown only on the cross section.
C Cambrian sedimentary rocks—Shown only on the cross section.
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GEOLOGIC SYMBOLS

CONTACT

L NORMAL FAULT — Dashed where location inferred;

70
14

dotted where concealed; bar and ball on downthrown
side; arrow perpendicular to fault shows dip of fault
plane, whereas arrow at an angle to fault shows rake of
slickensides on fault plane; arrows on cross sections
show relative movement

J;i--- ------ STRIKE-SLIP FAULT — Dashed where location inferred;

79
14

dotted where concealed; opposing arrows on either side
of the fault on the map show relative movement; arrow
perpendicular to fault shows dip of fault plane, whereas
arrow at an angle shows rake of slickensides on fault
plane; T (toward) and A (away) show relative
movement on cross sections

-TL’—E--- """ OBLIQUE-SLIP FAULT — Dashed where location

%

inferred; dotted where concealed; bar and ball on
downthrown side and opposing arrows on either side of
the fault plane show relative movement on map; arrow
perpendicular to fault shows dip of fault plane, whereas
arrow at an angle shows rake of slickensides on fault
plane; arrows and T (toward) and A (away) show
relative movement on cross sections

GOLDSTRIKE THRUST FAULT — Barbs on upper plate;
arrows show relative movement on cross sections

GRAVITY-SLIDE SURFACE — Barbs on upper plate;
arrows show relative movement on cross sections

CALDERA MARGIN — Queried where designation as a
caldera is uncertain; hachures on downthrown side

ANTICLINE — Dashed where location inferred; arrow
shows direction of plunge

SYNCLINE

OVERTURNED SYNCLINE — Dashed where location
inferred

STRIKE AND DIP OF BEDDING - Includes foliation
(based primarily on pumice and biotite) in ash-flow
tuffs:

inclined
overturned
FLOW FOLIATION IN LAVA FLOWS

LOCATION OF CHEMICAL ANALYSIS — Includes
sample number; analysis and coordinates given in the
table; table includes some samples collected from just
outside the map area

SPRING
MINE
ADIT
SHAFT
PROSPECT
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LITHOLOGIC COLUMN
Goldstrike Quadrangle

G w
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E 2o MAP | THICKNESS 2
g % ko S MAP UNIT SYMBOL |Feet (Meters) LITHOLOGY NOTES z3
> 8w Ex
» | D z
. |Hol.
O Pleist i
1.8 eish surficial deposits annggrs ——-
Plio. ’
5.3
gravity-slide breccia Tgb 180 (55)
basalt Tb 200 (60)
rhyolite and dacite lava flows Trd 250 (75)
Ox Valley Tuff To 4000 (1200) 14-13.5 Ma E
derived from Mineral
Mountain intrusion
Tot 100 (30)
>
o The 60 (20) derived from Caliente
o S Tuff of Horse Canyon caldera complex
< o 18.7 Ma
é Racer Canyon Tuff Tr 1500 (450) derived from Caliente
- caldera complex
'_
o andesite Ta 4000 (1200)
w
— - 22.0 Ma
Harmony Hils Tuff|  7qp 900 (275) probably derived from
Bull Valley intrusion
22.8 Ma
Bauers Tuff Member Tqcb 700 (215) derived from Caliente
of Condor Canyon Fm caldera complex
) 23.8 Ma
Leach Canyon Formation Tql 600 (180) probably derived from
23.03 2 T 2012 Caliente caldera complex
@ Sedimentary rocks, Isom Formation, Tin <] 110 (34) 27-26 Ma
8 and Wah Wah Springs Formation 50 (15) 29.5 Ma
2 30 (10) /oo o5
3304 ©) upper uni.t Tcu 150 (50) host for gold deposits
: Eo., Claron Formation middle unit Tcm 150 (50) unconformity
65.5 Paleo) lower unit Tl 100 (30)
270+ major unconformity
Z .
<§f by Queantoweap Sandstone Pq 1000+ (300+) e
= % e
E - Pakoon Formation Pp 600 (180)
299 unconformity
Z (o
Z 132 Callville Limestone PPc 1500 (450) fossiliferous
o (84
-]
318 80 (%5
1) S |Scotty Wash Quartzite and Chainman Shale Msc Wgﬂ T
2)
350 = | 4 Redwall Limestone Mr 550+ (170+) crinoids and corals
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