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EXPLANATION

Contact

High-angle normal fault – Dashed where approximately located,
dotted where concealed; bar and ball on downthrown side

Structural contour – Red contours drawn on top of Navajo Sandstone (Jn);
purple contours drawn on top of Tenney Canyon Tongue of Kayenta
Formation (Jkt); dashed where projected; units are in feet above mean sea level.
Contour interval 100 feet

Line of cross section

Strike and dip of bedding

Joint, near vertical

Quarry

Gravel pit

Spring

Oil exploration drill hole – Plugged and abandoned

Location of distinctive or named dunes

Star Dune

First Dune

Echo dune area
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DESCRIPTION OF MAP UNITS

QUATERNARY

Alluvial deposits

Alluvial-gravel deposits (Upper to middle Pleistocene?) – Poorly to well sorted, subangular to rounded, gravel- and cobble-
sized clasts locally mixed with sand and interbedded with silt and mud; deposited principally as debris flows on pediment 
surfaces and as higher stream-terrace and channel-fill deposits; mapped within the Sevier fault zone near the northern map 
border; clasts reflect rock types exposed in drainage basins upstream, from locally derived sandstone to transported quartzite 
cobbles; many deposits are completely covered by windblown sand (Qes) and only locally exposed in the vertical walls of 
adjacent drainages; 0 to 150 feet (0–45 m) thick.

Artificial deposits

Artificial fill (Historical) – Artificial fill used to create small dams; consists of engineered fill and general borrow material; 
although only a few deposits have been mapped, fill should be anticipated in all areas with human impact, many of which 
are shown on the topographic base map; 0 to 20 feet (0–6 m) thick.

Eolian deposits
 

Eolian sand (Holocene to upper Pleistocene?) – Well- to very well sorted, very fine to medium-grained, well-rounded, mostly 
quartz sand derived principally from the Navajo Sandstone and the Temple Cap Formation; commonly deposited in irregular 
hummocky mounds on the lee side of ridges and as sand ramps and aprons against steep-sided buttes (Sable and Doelling, 
1990); primarily deposited on the main body of the Navajo Sandstone, but also deposited on alluvial-gravel (Qag) and 
mixed alluvial and eolian deposits (Qae) and as sheet sand on the Co-op Creek Limestone Member of the Carmel Forma-
tion (Jcc); locally includes small dunes and bedrock outcrops; mapped as sand sheet (Qess) in areas where mostly stabilized 
by scrub vegetation such as sagebrush near the southern (upwind) end and northern edge of the Coral Pink Sand Dune field, 
where it includes rolling hills of partially stabilized, poorly organized dunes; 0 to 50 feet (0–15 m) thick.

 
Eolian-sand dunes (Holocene to upper Pleistocene?) – Well- to very well sorted, very fine to medium-grained, well-rounded, 

mostly quartz sand derived principally from the Navajo Sandstone and blown through a wind gap south of Block Mesas into 
dune form by strong prevailing southwesterly winds (Ford and others, 2010); main dune area is about 8 miles (13 km) long 
and one mile (1.6 km) wide with the lower half on the downthrown block and the upper half on the upthrown block of the 
Sevier fault (Doelling and Davis, 1989); 0 to 100 feet (0–30 m) thick.

The lower half, upwind portion of the dune field, including Coral Pink Sand Dunes State Park, is oriented north-northeast 
because the northward-pinching sides of the Vermilion Cliffs near the Sevier fault scarp slightly alters wind direction. This 
lower portion consists of a downwind succession of dune types, as well as small bedrock outcrops and areas of sheet sand 
and alluvial clay deposits, within the dune field: (1) Stabilized to partially stabilized, poorly developed and somewhat 
chaotic small transverse and parabolic-like dunes (Qeds) that form a transitional area between the stabilized sand sheet 
(Qess) and the active core of transverse dunes (Qedt).  Disjunct stands of ponderosa pine trees in this area reveal five 
periods of establishment since A.D. 1562, the age of the oldest dendrochronologically dated tree (Wilkins and others, 2005). 
(2) On the edge of the active core of transverse dunes (Qedt), First Dune is sometimes referred to in state park information 
as a barchan dune.  As shown on 1960 aerial photos, it is actually a transverse dune that has migrated north and wrapped 
around an outcrop of Navajo Sandstone thus creating a "current crescent" dune (Pye and Tsoar, 1990).  (3) Within the active 
core of transverse dunes (Qedt) is a single star dune that formed through the merger of several smaller transverse dunes 
between 1960 and 1972 (Wilkins and others, 2002, 2003; Clement and others, 2006).  A sample taken from 3 feet (1 m) 
below the surface of the southern swale of Star Dune gave an optically stimulated luminescence (OSL) age of 710 ± 160 yr, 
which suggests that current eolian activity at the surface is not reworking deeper, older sand (Wilkins and others, 2005).  (4) 
An active core of transverse dunes (Qedt) grades downwind from transverse ridges into barchanoid ridges with a weak 
fish-scale or akle pattern (Pye and Tsoar, 1990).  In this area, a 14C age indicates exhumed stands of ponderosa pine with 
roots in situ in bedrock died 190 ± 50 14C yr B.P. (Wilkins and others, 2005).  (5) Small parabolic dunes form along the 
northwest margin (Qedpm) of the lower portion of the dune field where sand movement is impeded by vegetation that 
stabilizes the dune arms.  The downwind ends of these arms are sometimes breached, increasingly so in the northward part 
of the area.  This creates "wind rift" dunes (Mabbutt, 1977) that have linear form with parallel arms, separated by short 
troughs.  (6) Within the active core of transverse dunes (Qedt), echo dunes form in front of and "echo" the shape of the cliffs 
along the eastern end of some of the barchanoid ridges because of vortexes that form as the wind strikes the cliff obliquely.

The Sevier fault escarpment in the dune field area is nearly covered by climbing dunes (Qedc).  A ramp angle of 5 to 12 
degrees creates a flow expansion point that results in reduced sand transport and the northeastward alignment of the upper 
portion of the dune field (Wilkins and Ford, 2007). This upper portion, part of the Moquith Mountains Wilderness Study 
Area, consists of large parabolic dunes (Qedp).  Some of these dunes rise 45 feet (13 m) above the surface of non-dune 
sand.  This area of large parabolic dunes is locally flanked along the northwest edge by a stabilized sand sheet (Qess). 

Dune activity responds to relatively slight changes in climate and the resulting moisture availability, which affects 
vegetation and sediment supply. A basal mud 28 inches (70 cm) below the surface of a clay-capped eolian mesa that was 
exhumed by passing dunes dated to 470 ± 50 14C yr B.P. and had an OSL age of 0.51 ± 0.06 ka  (A.D. 1435–1555); this 
indicates that the mud was deposited at a time of increased moisture near the beginning of the Little Ice Age (Wilkins and 
others, 2005).  Two additional OSL samples from separate eolian layers 6.5 feet (2 m) and 9.2 feet (2.8 m) below the clay 
had ages of 2.8 ± 0.22 ka  (1015-525 B.C.) and 4.1 ± 0.19 ka  (2205-1905 B.C.) (Wilkins and others, 2005).  Ground-
penetrating radar (GPR) imagery identified additional buried bounding surfaces that cause reduced radar penetration, 
whereas penetration in active dune areas was greater than 65 feet (20 m) (Wilkins and others, 2005).  Nearest neighbor 
analysis reveals that since 1960, dunes in the upper portion of the dune field have shifted toward a more clustered state while 
those in the lower portion of the dune field have become slightly less clustered (although their average crest length has 
increased because of smaller migrating dunes merging) and that the mathematical center of the dune field has shifted 4900 
feet (1500 m) to the northeast.  From that data, Wilkins and Ford (2007) conclude that the system is currently adjusting to 
an earlier sediment influx from a drier period (1931 to 1961) which is presently working its way through the system. 
Currently, sediment supply is more limited because of vegetation encroachment that has at least partially stabilized the 
southern end of the lower dune field. 

Mass-movement deposits
 

Talus (Holocene to upper Pleistocene?) – Very poorly sorted, angular boulders with minor fine-grained interstitial sediment; 
deposited mostly by rock fall on and at the base of steep slopes; forms primarily from blocks that weather from the Navajo 
and Kayenta Formations and come to rest on the more gentle slope of the Moenave Formation; locally contains small 
landslide and slump deposits; may include and is gradational with older alluvium and eolian pediment-mantle deposits 
(Qape) farther downslope; 0 to 20 feet (0–6 m) thick.

 Mixed-environment deposits

Mixed alluvial and colluvial deposits (Holocene to upper Pleistocene?) – Poorly to moderately sorted, clay- to boulder-sized, 
locally derived sediment deposited in swales and minor active drainages by alluvial, slope-wash, and creep processes; 
gradational with  mixed alluvium and eolian pediment-mantle (Qape) and mixed alluvial and eolian (Qae) deposits; older 
deposits (Qaco), which are mapped in Sethys Canyon in the northwest and several canyons along the east edge of the 
quadrangle, are being dissected by, and are currently 10 to 50 feet (3–15 m) above, modern drainages; 0 to 30 feet (0–9 m) 
thick.

Mixed alluvial-fan and colluvial deposits (Holocene) – Poorly to moderately sorted, non-stratified, subangular to 
subrounded, boulder- to clay-size sediment deposited at the mouths of active streams and washes; clast composition ranges 
widely and reflects rock types exposed in upstream drainage basins; deposited principally as debris flows and debris floods 
on active depositional surfaces, but also has significant colluvial component; typically 10 to 30 feet (3–9 m) thick.

Mixed alluvial and eolian deposits (Holocene to upper Pleistocene?) – Moderately to well-sorted, clay- to sand-sized alluvial 
sediment that locally includes abundant eolian sand and minor alluvial gravel; includes alluvial-fan deposits too small to 
map separately in the upper reaches of the deposits; calcic soils exhibit stage II pedogenic carbonate development (after 
Birkeland and others, 1991); upper reaches accumulate sediment; deposits in this quadrangle are not nearly as incised as 
those of  Kanab Creek to the east (Smith, 1990; Summa, 2009; Hayden, 2011), thus older depositional phases, likely present 
at depth as along Kanab Creek (Hayden, 2011), are not exposed in this quadrangle; mapped in the southwest corner of the 
quadrangle, along the valley west of Coral Pink Sand Dunes State Park, and in the northeast and northwest corners of the 
quadrangle on broad, nearly flat areas of Navajo Sandstone and Co-op Creek Member of the Carmel Formation; exposed 
thickness 0 to 30 feet (0–9 m).

Mixed eolian and alluvial deposits (Holocene to upper Pleistocene?) – Moderately to well-sorted, fine- to medium-grained 
eolian sand partially reworked by alluvial processes; includes some poorly to moderately sorted gravel to mud deposited in 
minor channels; 0 to 20 feet (0–6 m) thick.

Mixed alluvium and eolian pediment-mantle deposits (Holocene to upper Pleistocene?) – Unconsolidated to weakly 
consolidated clay- to small boulder-size debris that forms a pediment mantle, commonly with a thin cover of eolian sand 
and loess, principally on broad planar surfaces cut across the non-resistant Petrified Forest Member of the Chinle Forma-
tion, but also on the Dinosaur Canyon Member of the Moenave Formation at the base of the Vermilion Cliffs; extends into 
valleys from the base of the Vermilion Cliffs in the southeast corner of the quadrangle; part next to cliffs still receives 
sediment and locally includes small, poorly sorted alluvial-fan, slope-wash, and minor talus deposits; dissected and left as 
isolated remnants up to 60 feet (18 m) above modern drainages; lower end merges with mixed alluvial and eolian (Qae) 
deposits just off of the quadrangle; important local source of sand and gravel in Kanab quadrangle to the east (Hayden, 
2011); 0 to 20 feet (0–6 m) thick.

unconformity

JURASSIC

Carmel Formation

Co-op Creek Limestone Member (Middle Jurassic) – Light-olive-gray to light-gray, thin- to medium-bedded, micritic 
limestone and sandy limestone interbedded with mostly light-gray, thinly laminated to thin-bedded, calcareous shale, platy 
limestone, and very fine to fine-grained sandstone; forms ledge to small cliff near base and top with steep, ledgy slope 
between; sparsely vegetated; locally contains Isocrinus sp. crinoid columnals, pelecypods, and gastropods, especially in the 
upper beds (Sable and Hereford, 2004); Tang and others (2000) reported significant crinoid-bearing beds in the upper part 
of the unusually thick, lower limestone ledge at Mount Carmel Junction to the north; lower unconformable contact is at the 
base of reddish-brown to light-gray sandy siltstone that underlies the lower limestone ledge, above the massively cross-
bedded, very light gray to grayish-pink sandstone of the White Throne Member of the Temple Cap Formation; Sprinkel and 
others (2011) proposed making this reddish-brown to light-gray sandy siltstone the Esplin Point Member of the Temple Cap 
Formation and thus placing the lower contact of the Co-op Creek Limestone Member at the base of the lowest limestone 
ledge;  Kowallis and others (2011) and Sprinkel and others (2011) reported several 40Ar/39Ar ages of about 168 to 170 Ma 
for altered volcanic ash beds, probably derived from a magmatic arc in what is now southern California and western 
Nevada, within the lower part of the member in southwest Utah; deposited in a shallow-marine environment (Imlay, 1980; 
Blakey and others, 1983); 160 to 200 feet (50–60 m) thick.
 

Pipiringos and O'Sullivan (1978) proposed an unconformity between the Temple Cap and Carmel Formations.  Kowallis and 
others (2011) and Sprinkel and others (2011) reported that there is not a significant time gap between the two formations 
and that they could not find field evidence for the unconformity.

Temple Cap Formation (Middle Jurassic) – Consists of two interfingering members that are mapped as one unit because of 
eastward thinning of the lower member. Sprinkel and others (2011) proposed making a third member, the Esplin Point 
Member of the Temple Cap Formation, from the reddish-brown to light-gray sandy siltstone below the limestone ledge at 
the base of the Co-op Creep Member of the Carmel Formation.  Those beds are still included in the Co-op Creek Member 
here since mapping was completed prior to the proposed change.  Upper White Throne Member is yellowish-gray to 
pale-orange, very thick bedded, well-sorted, fine-grained quartz sandstone with high-angle cross-bed sets as much as 20 feet 
(6 m) thick; cliff forming, similar to the Navajo Sandstone but slightly less resistant to erosion; basal grayish-red, blocky, 
angular-weathering sandstone forms a ledge; deposited in coastal dune field (Blakey, 1994; Peterson, 1994).  Lower 
Sinawava Member is moderate-reddish-brown mudstone, siltstone, and very fine grained, gypsiferous, silty sandstone; thins 
eastward and locally pinches out and reappears; where present, it forms a prominent, narrow, vegetated slope at the top of 
the Navajo Sandstone; weathered reddish-brown clay particles form vertical streaks that stain the upper, “white” portion of 
the Navajo Sandstone; lower, unconformable contact is at the base of the moderate-reddish-brown mudstone slope, or where 
not present, at the break in slope above the vertical cliff of the massively bedded, light-gray sandstone of the Navajo 
Sandstone; deposited in coastal-sabkha and tidal-flat environments (Blakey, 1994; Peterson, 1994); Kowallis and others 
(2011) and Sprinkel and others (2011) reported several 40Ar/39Ar ages of 170 to 173 million years old for altered volcanic 
ash beds,  probably derived from a magmatic arc in what is now southern California and western Nevada, within the 
Sinawava Member in southwest Utah; 150 to 200 feet (45–60 m) thick.

J-1 unconformity (Pipiringos and O’Sullivan, 1978), formed prior to about 179 million years ago in southwest Utah (Kowallis 
and others, 2011; Sprinkel and others, 2011).

Navajo Sandstone and Kayenta Formation

Navajo Sandstone (main body) (Lower Jurassic) – Light-gray to pale-orange in upper part and moderate-reddish-orange to 
moderate-reddish-brown in lower part, massively cross-bedded, moderately well-cemented sandstone with well-rounded, 
fine- to medium-grained, frosted quartz sand grains; locally, ironstone bands, and concretions called “Moki marbles,” are 
common; strongly jointed; forms the White Cliffs step of the Grand Staircase (Gregory, 1950); divisible into three informal 
units of roughly equal thickness after Doelling (2002, 2008), which are based on color and weathering tendencies; however, 
they are not mapped separately:  (1) “White” sandstone forms the upper part of the Navajo Sandstone and forms the White 
Cliffs along the front of Block Mesas west of the Sevier fault; it is less resistant than the “brown” sandstone at the base of 
the formation and is pale gray, yellowish gray, and orangish gray because of alteration, remobilization, and bleaching of 
limonite and hematite cement, possibly due to hydrocarbon migration (see Beitler and others, 2003).  (2) “Pink” sandstone 
forms the middle part of the Navajo Sandstone and is partially exposed across the valley as low hills and in drainages in the 
southwest corner of the quadrangle; it is generally the least resistant of the three units, is the most covered with eolian sand, 
and is pale reddish orange due to more uniformly dispersed hematite cement.  (3) “Brown” or red sandstone, which forms 
the lower massive cliff of the Navajo Sandstone that caps the Moquith Mountains and the Vermilion Cliffs east of the Sevier 
fault, is streaked medium- to dark-reddish-brown because of iron oxide remobilization caused by groundwater or hydrocar-
bon migration.  The Navajo Sandstone is the main aquifer for much of the region (Heilweil and others, 2002; Rowley and 
Dixon, 2004); deposited in a vast coastal and inland dune field with prevailing winds principally from the north, with rare 
interdunal ephemeral lakes (Blakey, 1994; Peterson, 1994); originally, much of the sand may have been carried to the area 
by a transcontinental river system that eroded Grenvillian-age (about 1.0 to 1.3 billion-year-old) crust that was involved in 
the Appalachian orogenesis of eastern North America (Dickinson and Gehrels, 2003; Rahl and others, 2003); lower contact 
is drawn where the massively bedded, vertically jointed sandstone gives way to the thinner bedded siltstone and sandstone 
of the Tenney Canyon Tongue of the Kayenta Formation; map unit includes areas of weathered sandstone regolith and 
Quaternary eolian sand too small to map separately; upper 1000 feet (300 m) exposed west of the Sevier fault and basal 600 
feet (180 m) exposed east of the Sevier fault, thus some of the middle portion is not exposed in the quadrangle; total 
thickness in this area is 1800 to 2000 feet (550–600 m) (Sargent and Philpott, 1987).

Tenney Canyon Tongue of Kayenta Formation (Lower Jurassic) – Interbedded pale-reddish-brown siltstone, mudstone, and 
very fine grained, very thin bedded to laminated, quartz sandstone; ledgy slope former; deposited in a distal river, playa, and 
minor lacustrine environments (Tuesink, 1989; Blakey, 1994; Peterson, 1994); type section located just east of the 
quadrangle in what is now called Tiny Canyon (rather than Tenney Canyon) on the topographic map (Doelling, 2008; 
Hayden, 2011); conformably lies between the Navajo Sandstone (main body) and the Lamb Point Tongue of the Navajo 
Sandstone with sharp upper and lower contacts; lower contact is placed where the thin, interbedded siltstone, mudstone, and 
sandstone above give way to the massively cross-bedded sandstone of the Lamb Point Tongue; thickens westward from 200 
to 250 feet (60–75 m).

Lamb Point Tongue of Navajo Sandstone (Lower Jurassic) – Grayish-white to grayish-orange, very fine to fine-grained, 
massively cross-bedded, quartz sandstone; forms cliff; type section at Ed Lamb Point is the southernmost point of the 
Vermilion Cliffs that barely crosses into Arizona just east of the Sevier fault (Wilson, 1958); conformably lies between 
Tenney Canyon Tongue and main body of the Kayenta Formation; springs locally develop at the lower contact with the main 
body of the Kayenta Formation; lower contact is placed where the massively bedded, vertically jointed sandstone gives way 
to thinner bedded siltstone and sandstone; deposited in an eolian erg and sabkha environment (Tuesink, 1989; Blakey, 1994; 
Peterson, 1994); thickens northeastward across the quadrangle from 300 to 400 feet (90–120 m).

Main body of Kayenta Formation (Lower Jurassic) – Reddish-brown to moderate-reddish-brown to pale-red siltstone and 
mudstone interbedded with very fine to fine-grained sandstone; includes minor intraformational pebble conglomerate and 
thin beds of light-gray limestone; light-gray siltstone marker bed about 30 feet (9 m) below the top extends across the 
quadrangle; forms ledgy slope; deposited in distal river, playa, and minor lacustrine environments (Tuesink, 1989; Blakey, 
1994; Peterson, 1994); thickness varies from 250 to 300 feet (75–90 m).

Springdale Sandstone Member of Kayenta Formation (Lower Jurassic) – Mostly pale-reddish-purple to pale-reddish-
brown, moderately sorted, fine- to coarse-grained, medium- to very thick bedded sandstone, and minor, thin, discontinuous 
lenses of intraformational conglomerate and thin interbeds of moderate-reddish-brown or greenish-gray mudstone and 
siltstone; has large lenticular and wedge-shaped, low-angle, medium-to large-scale cross-bedding; secondary color banding 
that either parallels or cuts across cross-beds is common in the sandstone; cliff face broken by non-resistant layers; uncon-
formable lower contact with the Whitmore Point Member of the Moenave Formation is placed at the base of more massive, 
ledgy sandstone beds above a slope of interbedded mudstone and claystone; contains locally abundant petrified and carbon-
ized fossil plant remains; deposited in braided-stream and minor floodplain environments (Clemmensen and others, 1989; 
Blakley, 1994; Peterson, 1994; and DeCourten, 1998); generally thickens eastward but locally thickens and thins abruptly; 
from 100 to 150 feet (30–45 m) thick.

J-sub Kayenta unconformity; Blakey (1994) and Marzolf (1994)  proposed a major regional unconformity at the base of the 
Springdale Sandstone, thus restricting the Moenave Formation to the Dinosaur Canyon and Whitmore Point Members.  
Subsequent work by Lucas and Heckert (2001), Molina-Garza and others (2003), and Lucas and Tanner (2007a) also 
suggested that the Springdale Sandstone is more closely related to and should be the basal member of the Kayenta Forma-
tion.  

JURASSIC/TRIASSIC

Moenave Formation - Shown on cross section only.

Whitmore Point Member (Lower Jurassic) – Interbedded, pale-reddish-brown, greenish-gray, and grayish-red mudstone 
and claystone, with thin-bedded, moderate-reddish-brown, very fine to fine-grained sandstone and siltstone; siltstone is 
commonly thin bedded to laminated in lenticular or wedge-shaped beds; claystone is generally flat bedded; contains several 
2- to 6-inch-thick (5–15 cm), bioturbated, cherty, very light gray to yellowish-gray, dolomitic limestone beds with algal 
structures (some altered to jasper), and fossil fish scales, possibly of Semionotids; forms poorly exposed ledgy slope; lower, 
conformable contact is placed at a pronounced break in slope at the base of the lowest light-gray, thin-bedded, dolomitic 
limestone and above the thicker bedded sandstone and siltstone ledges of the Dinosaur Canyon Member; deposited in 
low-energy lacustrine and fluvial environments (Clemmensen and others, 1989; Blakey, 1994; Peterson, 1994; DeCourten, 
1998; Milner and Kirkland, 2006); thickens to the west from 40 to 80 feet (12–24 m).

Dinosaur Canyon Member (Lower Jurassic to Upper Triassic) – Uniformly colored, moderate-reddish-brown to moderate-
reddish-orange, interbedded, generally thin-bedded, very fine to fine-grained sandstone, very fine grained silty sandstone, 
and lesser siltstone and mudstone; ripple marks and mud cracks common; forms ledgy slope; forms the base of Vermilion 
Cliffs step of the Grand Staircase (Gregory, 1950); regionally, a thin chert pebble conglomerate marks the base of the unit 
and the unconformity, but in this area, it is more common to have a 1.5- to 2-foot-thick (0.5–0.6 m) gypsum bed with local 
chert pebbles; unconformable lower contact is placed at the base of the chert pebble conglomerate or gypsum bed where 
recognized, otherwise, it is placed at the prominent color and lithologic change from reddish-brown siltstone above to 
pale-greenish-gray mudstone of the Petrified Forest Member of the Chinle Formation below; deposited on broad, low 
floodplain that was locally shallowly flooded (fluvial mud flat) (Clemmensen and others, 1989; Blakey, 1994; Peterson, 
1994; DeCourten, 1998); 200 to 250 feet (60–75 m) thick.

TR-5 unconformity (Lucas and Tanner, 2007b; also see Molina-Garza and others, 2003; Kirkland and Milner, 2006); 
previously called the J-0 unconformity by Pipiringos and O’Sullivan (1978), who thought it was at the Jurassic-Triassic 
boundary; however, the Jurassic-Triassic boundary is now considered to be within the Dinosaur Canyon Member of the 
Moenave Formation and the regional unconformity is in Upper Triassic strata. 

TRIASSIC

Chinle Formation

Petrified Forest Member (Upper Triassic) – Highly variegated, light-brownish-gray, pale-greenish-gray, to grayish-purple 
bentonitic shale, mudstone, siltstone, and claystone, with lesser thick-bedded, resistant sandstone and pebble to small cobble 
conglomerate near base; conglomerate clasts are primarily chert and quartzite; contains minor chert, nodular limestone, and 
very thin coal seams and lenses as much as 0.5 inch (1 cm) thick; mudstone weathers to a “popcorn” surface due to expan-
sive clays, causing road and building foundation problems; contains locally abundant, brightly colored fossilized wood; 
weathers to badland topography; prone to landsliding along steep hillsides, however, most outcrops within this quadrangle 
have low relief; mostly slope forming; lower contact is not exposed; deposited in lacustrine, floodplain, and fluvial environ-
ments (Stewart and others, 1972; Dubiel, 1994); upper part of map unit may include strata of the Owl Rock Member of the 
Chinle Formation; mapped in the southeast corner of the quadrangle; commonly mantled by mixed alluvial-pediment-eolian 
(Qape), older alluvial-colluvial (Qaco), and alluvial-colluvial (Qac) deposits; incomplete thickness is 150 feet (45 m).

Subsurface Unit

Mesozoic-Paleozoic, undivided – Shown on cross section only.

SEVIER FAULT ZONE

 The approximately 300-mile-long (480 km) Sevier fault zone extends from about 35 miles (56 km) south of the 
Grand Canyon in Arizona northward to central Utah (Doelling and Davis, 1989; Lund and others, 2008).  It has been divided 
into four sections, as reported by Lund and others (2008), with part of the 50-mile long (80 km) Northern Toroweap section 
cutting through the Yellowjacket Canyon quadrangle.  The section boundary between this Northern Toroweap section and 
the Sevier section to the north, which is also considered a probable seismogenic segment boundary, is just north of the 
quadrangle at Clay Flat.  Within the Sevier section, the Sevier fault has displaced Quaternary basaltic rocks at Black Moun-
tain and Red Canyon, about 20 miles and 50 miles (30 and 80 km) north of the quadrangle, respectively; however, no histori-
cal earthquakes have ruptured the surface (Lund and others, 2008).  No displaced Quaternary deposits have been recognized 
along the Northern Toroweap section of the fault in Utah, although a late Pleistocene scarp is present near Pipe Springs 
National Monument in Arizona (Lund and others, 2008).  Lund and others (2008) reported that the Northern Toroweap 
section has a vertical slip rate of less than 0.1 mm per year and a recurrence interval of greater than 30,000 years between 
surface faulting earthquakes.  Paleoseismic information is also summarized in Hecker (1993) and Black and others (2003).  
 Although there are no fault scarps on unconsolidated deposits in the quadrangle, historical seismicity from 1959 
to 2004, detailed by Brumbaugh (2008), defines a band of activity extending through the area.  The largest earthquake 
during this time period had an epicenter within the Yellowjacket Canyon quadrangle. It occurred on February 12, 1962, at 
latitude 36°06'50" N. and longitude 112°42'40" W. and had a magnitude of ML 4.4 (Brumbaugh, 2008).
 The fault zone of overlapping and anastomosing strands reaches widths of about 0.5 mile (1 km) (Lund and others, 
2008).  Anderson and Christensen (1989) proposed left-lateral oblique slip that resulted in the formation of Clay Flat as a 
pull-apart basin at the step-over between fault segments.  Although Clay Flat is a small depocenter that divides the Yellow-
jacket drainage basin, no direct evidence of left-lateral oblique slip has yet been found.  Movement along the Sevier fault 
probably began 15 to 12 million years ago (Davis, 1999).
 Within the Yellowjacket Canyon quadrangle, the generally north to north-northeastward striking faults that consti-
tute the fault zone are high-angle normal faults, most with down-to-the-west displacement.  Blocks between these faults are 
commonly moderately tilted to perhaps 40°, as near the center of the quadrangle north of the sand dunes at the drainage 
divide between Yellowjacket Canyon flowing north and Sand Canyon Wash flowing south.  Vertical displacement near the 
south edge of the quadrangle is approximately 1600 feet (500 m), with the least resistant middle portion of the Navajo 
Sandstone on the downthrown block juxtaposed against the Dinosaur Canyon Member of the Moenave Formation on the 
upthrown block at the base of the Vermilion Cliffs.  At this location, the fault zone is at its widest and the escarpment, more 
than 1000 feet (300 m) tall, is at its maximum height.  The Vermilion Cliffs gradually disappear to the north until only the 
capping Navajo Sandstone is exposed along the 350-foot high (100 m) escarpment at the sand dunes, where climbing sand 
dunes all but cover it.  North of the dunes and other eolian sand deposits, the Sevier fault is a series of simple right-stepping 
faults expressed as a 200-foot (60 m) cliff of Navajo Sandstone.  Along the north edge of the quadrangle, the fault zone 
widens again as various splays of the fault diverge to accommodate the large westward step-over of the fault near the 
segment boundary at Clay Flat north of the quadrangle (Hayden, 2008).
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